class: center, middle ## Prudential fiscal stimulus MMF Conference, 6 September 2022 <table width=1100> <td width=500 style="vertical-align:top;"> #### Alfred Duncan #### University of Kent </td> <td width=500 style="vertical-align:top;"> #### Charles Nolan #### University of Glasgow </td> </table> <br> <br> <br> This project is supported by research funding from UKRI Grant Ref: ES/V015559/1 --- class: left, middle ### The problem (the Greenspan put) <table width=1100> <td width=500 style="vertical-align:top;"> Stimulus policies can increase moral hazard. <br><br> Anticipating to be rescued in downturns, firms might take more risk today. <br><br> This paper asks: - Can we stimulate the economy in a way that encourages prudence? </td> <td width=500 style="vertical-align:top;"> </td> </table> <br> --- class: left, middle ### Our contribution <table width=1100> <td width=450 style="vertical-align:top;"> - We show that countercyclical wage subsidies can improve welfare, even in the absence of aggregate demand externalities. - We characterise the optimal wage subsidies. - We estimate that simple rule implementations can generate large welfare gains. <br> </td> <td width=650 style="vertical-align:top;"> <img src="images/map.svg" width=650></img> Figure: Countries with new or existing wage subsidy schemes during the Covid-19 pandemic (Sources: ILO, IMF, authors’ calculations) </td> </table> <br> <!-- --- class: left, middle ### The contribution <table width=1100> <td width=500 style="vertical-align:top;"> Anticipated wage subsidy stimulus policies can have an ex ante macroprudential effect. <br><br> - We solve for optimal wage subsidies under log utility. - We estimate that the welfare gains from countercyclical wage subsidies are large. </td> <td width=500 style="vertical-align:top;"> </td> </table> <br> --> <!-- --- class: left, middle ### Conventional wisdom <table width=1100> <td width=500 style="vertical-align:top;"> Traditionally, there is thought to be a conflict between ex post stimulus and ex ante incentives for financial stability. <br> Sometimes this is referred to as the *Greenspan put*. <br> The idea is that firms have an incentive to take *excessive* cyclical risk during expansions because policymakers will pursue expansionary policies in downturns. <br> Lack of formal literature. </td> <td width=500 style="vertical-align:top;"> </td> </table> <br> --> --- class: left, middle ### Intuition behind our result Absent intervention <img src="diagrams/Diag0.svg" width=1100></img> <br> --- class: left, middle ### Intuition behind our result Introduction of the wage subsidy <img src="diagrams/Diag1.svg" width=1100></img> <br> --- class: left, middle ### Intuition behind our result Firm's risk allocation response <img src="diagrams/DiagN.svg" width=1100></img> <br> --- class: left, middle ### Intuition behind our result <img src="diagrams/WSvCCyB.svg" width=1100></img> <br> --- class: left, middle ### Intuition behind our result <table width=1100> <td width=500 style="vertical-align:top;"> Labour supply is a complement to firms' inside wealth. <!-- <br> Subsidised labour in downturns increases the marginal value of inside wealth. --> <br> Anticipating wage subsidies in recessions, firms will be more prudent in expansions. <br> The ex-post wage subsidy replicates an ex-ante macroprudential intervention. </td> <td width=500 style="vertical-align:top;"> </td> </table> <br> <!-- --- class: left, middle ### Wage subsidies <table width=1100> <td width=450 style="vertical-align:top;"> - Are not the only prudential fiscal stimulus. - Illustrate the theory in a clear way (hopefully!) - Are popular right now. - prudential austerity programmes also exist (not presented here). </td> <td width=650 style="vertical-align:top;"> <img src="images/map.svg" width=650></img> Figure: Countries with new or existing wage subsidy schemes during the Covid-19 pandemic (Sources: ILO, IMF, authors’ calculations) </td> </table> <br> --> <!-- --- class: left, middle ### Wage subsidies <img src="images/map.svg" width=1200></img> Figure: Countries with new or existing wage subsidy schemes during the Covid-19 pandemic (Sources: ILO, IMF, authors’ calculations) <br> --> --- class: left, middle ### Related literature <table width=1100> <td width=500 style="vertical-align:top;"> Macropru - di Tella (2017); Duncan and Nolan (2022). - Farhi and Werning (2016); Schmitt-Grohe and Uribe (2012); Information economics - Arnott and Stiglitz (1991) </td> <td width=500 style="vertical-align:top;"> </td> </table> <br> <!-- --- class: left, middle ### Rest of this talk - General model and macroprudential externality (close to di Tella, 2017 JPE) - Theory results - Quantitative exercise --> --- class: left, middle # The macroprudential externality --- class: left, middle # The macroprudential externality ## Three ingredients 1. Anonymous unrestricted trade in aggregate-state contingent securities. 2. Agency costs restricting trade in idiosyncratic-state contingent securities. 3. Risk aversion over individual specific states. <a href='/#28'>Jump to results</a> --- class: left, middle ### The entrepreneur's intratemporal problem <table width=1100> <td width=700 style="vertical-align:top;"> $$ R(\theta,s),b^e,h^e =\arg \max \mathbb{E} \left\lbrace \hat{v}^e(R(\theta,s)q^e) | \theta\right\rbrace $$ subject to $$ R(\theta,s)q^e \leq f(\theta,k,h) - r^b(\theta)b^e - wh^e\qquad \forall \theta$$ in addition to $$ [\text{capital budget constraint}] $$ $$ [\text{truth telling constraint}] $$ $$ [\text{lender participation constraint}] $$ </td> <td width=400 style="vertical-align:top;"> </td> </table> <br> --- class: left, middle ### The entrepreneur's intratemporal problem <table width=1100> <td width=700 style="vertical-align:top;"> $$ R(\theta,s),b^e,h^e =\arg \max \mathbb{E} \left\lbrace {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\hat{v}^e}(R(\theta,s)q^e) | \theta\right\rbrace $$ subject to $$ R(\theta,s)q^e \leq f(\theta,k,h) - r^b(\theta)b^e - wh^e\qquad \forall \theta$$ in addition to $$ [\text{capital budget constraint}] $$ $$ [\text{truth telling constraint}] $$ $$ [\text{lender participation constraint}] $$ </td> <td width=400 style="vertical-align:top;"> \\({\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\hat{v}^e}\\) is concave. Entrepreneurs are risk averse, but behave as risk neutral when financial markets are perfect. </td> </table> <br> --- class: left, middle ### The entrepreneur's intratemporal problem <table width=1100> <td width=700 style="vertical-align:top;"> $$ R(\theta,s),b^e,h^e =\arg \max \mathbb{E} \left\lbrace \hat{v}^e(R(\theta,s)q^e) | \theta\right\rbrace $$ subject to $$ R(\theta,s)q^e \leq f(\theta,k,h) - r^b(\theta)b^e - wh^e\qquad \forall \theta$$ in addition to $$ [\text{capital budget constraint}] $$ $$ {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}[\text{truth telling constraint}]} $$ $$ [\text{lender participation constraint}] $$ </td> <td width=400 style="vertical-align:top;"> Quantitative model:<br> Imperfect state verification (Duncan and Nolan, 2019) Theory results can accommodate<br> Grossman Hart (1983), Krasa and Villamil (2000), Lacker and Weinberg (1989). </td> </table> <br> --- class: left, middle ### The entrepreneur's intratemporal problem <table width=1100> <td width=700 style="vertical-align:top;"> $$ R(\theta,s),b^e,h^e =\arg \max \mathbb{E} \left\lbrace \hat{v}^e(R(\theta,s)q^e) | \theta\right\rbrace $$ subject to $$ R(\theta,s)q^e \leq f(\theta,k,h) - {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}r^b(\theta)b^e} - wh^e\qquad \forall \theta$$ in addition to $$ [\text{capital budget constraint}] $$ $$ [\text{truth telling constraint}] $$ $$ [\text{lender participation constraint}] $$ </td> <td width=400 style="vertical-align:top;"> \\({\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}r^b(\theta)b^e}\\) is the net interest paid on loans. This is state-contingent, negative in default. Partially insures fluctuations in \\(\theta\\). </td> </table> <br> --- class: left, middle ### The entrepreneur's intratemporal problem <table width=1100> <td width=700 style="vertical-align:top;"> $$ R(\theta,s),b^e,h^e =\arg \max \mathbb{E} \left\lbrace \hat{v}^e(R(\theta,s)q^e) | \theta\right\rbrace $$ subject to $$ R(\theta,s)q^e \leq f(\theta,k,h) - r^b(\theta)b^e - {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}wh^e}\qquad \forall \theta$$ in addition to $$ [\text{capital budget constraint}] $$ $$ [\text{truth telling constraint}] $$ $$ [\text{lender participation constraint}] $$ </td> <td width=400 style="vertical-align:top;"> \\({\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}wh^e}\\) is the total wage bill. Workers are hired before the realisation of \\(\theta\\). Wages are not contingent on \\(\theta\\). </td> </table> <br> --- class: left, middle ### The entrepreneur's intertemporal problem <table width=1100> <td width=700 style="vertical-align:top;"> $$ v^e(q^e) = \max_{x^e,c^e,{q^e}'} \mathbb{E} \left\lbrace u^e(c^e) + \beta^e v^e({q^e}')\right\rbrace $$ subject to $$ {q^e}' = R(\theta,s)q^e - c^e - \int_{s'\in S} p(s') x^e(s') ds + {x^e}(s')$$ </td> <td width=400 style="vertical-align:top;"> </td> </table> <br> --- class: left, middle ### The entrepreneur's intertemporal problem <table width=1100> <td width=600 style="vertical-align:top;"> $$ v^e(q^e) = \max_{x^e,c^e,{q^e}'} \mathbb{E} \left\lbrace u^e(c^e) + \beta^e v^e({q^e}')\right\rbrace $$ subject to $$ {q^e}' = {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}R(\theta,s)}q^e - c^e - \int_{s'\in S} p(s') x^e(s') ds + {x^e}(s')$$ </td> <td width=400 style="vertical-align:top;"> \\(\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}R(\theta,s)\\) is an indirect gross return function. It is the result of privately optimal borrowing and hiring, from the entrepreneur's intratemporal problem. </td> </table> <br> --- class: left, middle ### The entrepreneur's intertemporal problem <table width=1100> <td width=600 style="vertical-align:top;"> $$ v^e(q^e) = \max_{x^e,c^e,{q^e}'} \mathbb{E} \left\lbrace u^e(c^e) + \beta^e v^e({q^e}')\right\rbrace $$ subject to $$ {q^e}' = R(\theta,s)q^e - c^e - {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\int_{s'\in S} p(s') x^e(s') ds + {x^e}(s')}$$ </td> <td width=400 style="vertical-align:top;"> \\({\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\int_{s'\in S} p(s') x^e(s') ds + {x^e}(s')}\\) captures trade in aggregate state contingent securities. Markets for aggregate risks are complete. </td> </table> <br> --- class: left, middle ### The entrepreneur's intertemporal problem <table width=1100> <td width=600 style="vertical-align:top;"> $$ v^e(q^e) = \max_{x^e,c^e,{q^e}'} \mathbb{E} \left\lbrace u^e(c^e) + \beta^e v^e({q^e}')\right\rbrace $$ subject to $$ {q^e}' = R(\theta,s)q^e - c^e - \int_{s'\in S} p(s') x^e(s') ds + {x^e}(s')$$ </td> <td width=400 style="vertical-align:top;"> **Assumption (anonymity)** Entrepreneurs are anonymous across financial markets. <br> **Assumption (interior borrowing)** Intratemporal financial allocations \\(x^e(s')\\) are unconstrained. <br> **Assumption (regularity)** \\(R\\) invertible, continuously differentiable, convex. </td> </table> <br> --- class: left, middle ### The household's problem <table width=1100> <td width=700 style="vertical-align:top;"> $$ v(q) = \max_{x,c,h,{q}'} \mathbb{E} \left\lbrace u(c,h)+ \beta v({q}')\right\rbrace $$ subject to $$ q' = (1+r)q + wh - c - {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\int_{s'\in S} p(s') x(s') ds + x(s')}$$ </td> <td width=400 style="vertical-align:top;"> \\({\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\int_{s'\in S} p(s') x(s') ds + {x}(s')}\\) captures trade in aggregate state contingent securities. Markets for aggregate risks are complete. </td> </table> <br> <!-- --- class: left, top ### How the intervention works <br> <br> <img src="images/IncentiveImprovingStimulusTable.svg" width=1000></img> --> --- class: left, middle ### Factor markets <table width=1100> <td width=700 style="vertical-align:top;"> $$\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255} l = \dfrac{\mathbb{E}_\Theta f(\theta,k,h)}{(1+r)q^e} $$ $$\dfrac{\mathbb{E}_\Theta [R(\theta,s)]}{1+r} = 1+l\tau$$ $$w = \mathbb{E}_\Theta f_h(\theta,k,h)( 1-\tau )$$ </td> <td width=400 style="vertical-align:top;"> \\(\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\text{Leverage, }l\\) </td> </table> <br> --- class: left, middle ### Factor markets <table width=1100> <td width=700 style="vertical-align:top;"> $$ l = \dfrac{\mathbb{E}_\Theta f(\theta,k,h)}{(1+r)q^e} $$ $$\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\dfrac{\mathbb{E}_\Theta [R(\theta,s)]}{1+r} = 1+l\tau$$ $$w = \mathbb{E}_\Theta f_h(\theta,k,h)( 1-\tau )$$ </td> <td width=400 style="vertical-align:top;"> \\(\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\text{The equity risk premium, }\\) \\(\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\rho := \dfrac{\mathbb{E}_\Theta [R(\theta,s)]}{1+r}\\) </td> </table> <br> --- class: left, middle ### Factor markets <table width=1100> <td width=700 style="vertical-align:top;"> $$ l = \dfrac{\mathbb{E}_\Theta f(\theta,k,h)}{(1+r)q^e} $$ $$\dfrac{\mathbb{E}_\Theta [R(\theta,s)]}{1+r} = 1+l\tau$$ $$\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255} w = \mathbb{E}_\Theta f_h(\theta,k,h)( 1-\tau )$$ </td> <td width=400 style="vertical-align:top;"> \\(\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\text{Wages, }w\\) </td> </table> <br> <!-- --- class: left, top ### The competitive allocation of aggregate risk <br> <br> <br> Markets equate innovations in expected marginal value $$\dfrac{\beta(1+r')u'(c',h')}{u'(c,h)} = \mathbb{E}_{\Theta} \dfrac{\beta^e R'(θ',s'){u^e}'({c^e}'(\theta'))}{{u^e}'(c^e)}$$ <br> To change the allocation of risk, you can either - tax / regulate financial markets directly, or - manipulate future marginal values. <br> --> --- class: left, top ### The competitive allocation of aggregate risk <br> <br> $$ \dfrac{\beta^e\ {\mathbb{E}'_{\Theta}u^{e}}'({c^e}'(\theta'))}{{u^e}'(c^e)} = \dfrac{\beta\ u'({c}',h')}{u'(c,h)} $$ <br> <br> --- class: left, top ### Optimal macroprudential policy <br> <br> $$ (1+\omega) \dfrac{\beta^e\ {\mathbb{E}'_{\Theta}u^{e}}'({c^e}'(\theta'))}{{u^e}'(c^e)} = \dfrac{\beta\ u'({c}',h')}{u'(c,h)} $$ <br> <br> Under optimal policy $$ \dfrac{\partial\omega}{\partial l},\dfrac{\partial\omega}{\partial \sigma} > 0.$$ Optimal macroprudential policy leans against - fluctuations in leverage, and - entrepreneurs' exposure to risk shocks. --- class: left, top ### The macroprudential externality <br> <br> <br> - Cyclical risk is a complement to downturn moral hazard. - Entrepreneurs accept too much cyclical risk, - amplifying the cost of moral hazard in downturns, - Arnott-Stiglitz: Regulate cyclical risk (macroprudential) <!-- --- class: left, top ### Optimal wage subsidy policy Denote the wage subsidy by \\(\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\varsigma\\) $$ q' = (1+r)q + wh(1+{\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\varsigma}) - c - \int_{s\in S} p(s) x(s) ds + x(s') - {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}T}$$ Balanced budget constraint, $$ \color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}T = wh\varsigma$$ <br> **Proposition** In the absence of macroprudential policy, the optimal wage subsidy satisfies $$ \dfrac{\partial\varsigma}{\partial l},\dfrac{\partial\varsigma}{\partial \sigma} > 0.$$ --> --- class: left, middle # Optimal wage subsidy policy --- class: left, top ### Optimal wage subsidy policy - example with log utility <table width=1100> <td width=700 style="vertical-align:top;"> **Proposition** Let $$u(c,h) = \log c - \dfrac{h^{1+\psi}}{1+\psi},\qquad u^e(c^e) = \log c^e. $$ Optimal wage subsidy: $$\varsigma^* = \dfrac{\tau}{1-\tau} - {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\hat{\lambda'}}(1-\beta^e) \dfrac{ 1+l\tau }{l(1-\tau)}$$ where $$\lambda = \frac{{u^e}'(\bar{c}^e)}{u_c(c,h)},\qquad\hat{\lambda}' := \frac{\lambda'-\lambda_0}{ \lambda'}.$$ <br> </td> <td width=400 style="vertical-align:top;"> <br> </td> </table> <br> --- class: left, top ### Optimal wage subsidy policy - example with log utility <table width=1100> <td width=700 style="vertical-align:middle;"> <br> <br> <br> Optimal wage subsidy $$\varsigma^* = {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\dfrac{\tau}{1-\tau}} - \hat{\lambda'}(1-\beta^e) \dfrac{ 1+l\tau }{l(1-\tau)}$$ </td> <td width=400 style="vertical-align:top;"> <br> <br> <br> <br> Optimal wage subsidy - completely offsets the financial wedge on impact, </td> </table> <br> --- class: left, top ### Optimal wage subsidy policy - example with log utility <table width=1100> <td width=700 style="vertical-align:top;"> Optimal wage subsidy $$\varsigma^* = \dfrac{\tau}{1-\tau} - {\color[rgb]{0.7372549019607844,0.5882352941176471, 0.9019607843137255}\hat{\lambda'}}(1-\beta^e) \dfrac{ 1+l\tau }{l(1-\tau)}$$ where $$\hat{\lambda}' := \frac{\lambda'-\lambda_0}{ \lambda'},$$ \\(\lambda' = \lambda\dfrac{\beta^e}{\beta}(1+l\tau).\\) \\(\hat{\lambda}'\\) is a summary statistic for history of past financial wedges. <br> </td> <td width=400 style="vertical-align:top;"> <br> Optimal wage subsidy - completely offsets the financial wedge on impact, - is moderated by past financial wedges. </td> </table> <br> --- class: left, top ### How the intervention works <br> *Benefit* Wage subsidies - complement firms' wealth, - encourage precaution during expansions, and - decreases financial frictions in downturns. - First order welfare gain. <br> *Cost* Wage subsidies - introduces a distortion between labour supply and demand, - Second order welfare cost. --- class: left, middle # Quantitative exercise --- class: left, top <table width=1100> <td width=550 style="vertical-align:top;"> ### The entrepreneur combines their own wealth with borrowed wealth and labour. Contracts are endogenously incomplete. Entrepreneurs can hide income from external creditors. External creditors can audit the firm and uncover hidden income, but these audits are noisy. (Duncan and Nolan, 2019) </td> <td width=550 style="vertical-align:top;"> <br> <br> <a title="linkedineditors, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via Wikimedia Commons" href="https://commons.wikimedia.org/wiki/File:Carlos_Ghosn_(15766546977).jpg"><img width="512" alt="Carlos Ghosn (15766546977)" src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Carlos_Ghosn_%2815766546977%29.jpg/512px-Carlos_Ghosn_%2815766546977%29.jpg"></a> </td> </table> <br> <!-- --- class: center, middle Leverage and the factor price wedge <img src="images/leverage_wedge.svg" width=900></img> --> <!-- --- class: left, middle ### Preferences $$ u^e(c^e) = \log(c^e)$$ $$ u(c,h) = \dfrac{c^{1-γ}}{1-\gamma} + \dfrac{h^{1+\psi}}{1+\psi}$$ --> <!-- --- class: left, top <table width=1100> <td width=500 style="vertical-align:top;"> ## The model #### Production $$ y = zh^\alpha$$ #### Aggregate demand $$ y = c + c^e$$ #### Labor supply $$ \dfrac{h^\psi}{c^{-\gamma}} = w $$ #### Entrepreneurs' optimal consumption $$ c^e = (1-\beta^e)\rho n^e $$ </td> <td width=500 style="vertical-align:top;"> #### Factor prices $$ \rho = 1+l\tau $$ $$ w = \dfrac{\alpha y}{h}(1-\tau)$$ #### Intratemporal financial contracts $$ l = \dfrac{y}{n^e}$$ $$ \tau = \mathcal{T}(l,\sigma)$$ #### Risk sharing & the distribution $$ \lambda' = \dfrac{c^{-\gamma}}{(c^e)^{-1}} $$ $$ \lambda' = \lambda \dfrac{\beta^e}{\beta}\rho $$ </td> </table> <br> --> <!-- --- --> <!-- class: left, top <table width=1100> <td width=500 style="vertical-align:top;"> ## The model - Competitive equilibrium real allocations under rational expectations can be expressed in terms of backward looking equations. - Solving for financial allocations and asset prices requires projection. - Agents make forward looking portfolio allocations, but these have consequences for real allocations only in the next period, and only contingent on contemporaneous realised states. - Solving for constrained efficient real allocations requires projection. </td> <td width=500 style="vertical-align:top;"> </td> </table> <br> --> --- class: left, middle ### Exercise <table width=1100> <td width=600 style="vertical-align:top;"> - We estimate the model on US business cycle data, with no macroprudential or wage subsidy policy. - We add a wage subsidy, via a simple rule, and find the optimal simple rule and the associated welfare gain. </td> <td width=400 style="vertical-align:top;"> </td> </table> <br> --- class: left, top ### Wage subsidy simple rule <table width=1100> <td width=700 style="vertical-align:top;"> We propose the following simple rule: $$ \varsigma = -\phi_\varsigma (y-y_0)$$ where \\(\varsigma\\) is the wage subsidy (tax if negative), and \\(y_0\\) is deterministic steady state output. <!-- <br><br> The policymaker balances their budget with a lump sum tax paid by households $$ T = wh\varsigma$$ $$ q' = (1+r)q + wh(1+\varsigma) - c - \int_{s\in S} p(s) x(s) ds + x(s') - T$$ --> </td> <td width=400 style="vertical-align:top;"> </td> </table> <br> --- class: center, top #### Expected welfare effects of wage subsidy simple rules <img src="images/simplerules.svg" width=600></img> Welfare gain is expressed as a share of business cycle welfare losses.<br> Shaded area indicates 90% credible interval. --- class: center, top #### Persistence of TFP shocks <img src="images/simplerules_rhoz.svg" width=1000></img> Welfare gain is expressed as a share of business cycle welfare losses. --- class: left, middle ## Dixit's critique If the margin that the policy is acting on is distorted,<br> then the Arnott-Stiglitz logic doesn't necessarily hold. The cost of the tax distortion could be first order. We add 1. A static labour tax 2. Dynamic New Keynesian markups --- class: center, top #### With 40% constant labour tax <img src="images/simplerules_dixit.svg" width=600></img> Welfare gain is expressed as a share of business cycle welfare losses.<br> Shaded area indicates 90% credible interval. --- class: left, top ### Interactions with monetary policy We derive a small-scale log-linear New Keynesian version of our model. The terms in black are as in Gali (2007). IS Curve $$({\color{blue}\zeta} + \gamma{\color{blue}-1})y = ({\color{blue}\zeta} + \gamma{\color{blue}-1})\mathbb{E}[y'] - {\color{blue}\zeta}(i - \mathbb{E}[\pi']) - {\color{blue}(\zeta-1)\varphi l - \gamma\Delta \varphi (\rho_\sigma-\varphi) \sigma}$$ Phillips Curve $$\pi = \beta \mathbb{E}[\pi'] + \lambda\left(\chi + \gamma - 1\right) y -\lambda\chi z {\color{blue}- \lambda \varsigma + \lambda(\zeta + \delta -1) l + \lambda(\delta_\sigma-\gamma\Delta\varphi)\sigma}$$ Leverage updating $${\color{blue}\zeta l = \left(\zeta-\varphi\right) L l + \gamma\Delta\varphi \sigma - (1+\gamma\Delta)\varphi L\sigma - (\gamma-1)(y-Ly)}$$ The policy variables are \\(i\\) and \\({\color{blue}\varsigma}\\). --- class: center, top #### Optimal policy <img src="images/irf_tfp.svg" width=1000></img> --- class: left, top ### Interactions with monetary policy <table width=1100> <td width=600 style="vertical-align:top;"> Proposition 2<br> Under joint optimal monetary and wage subsidy policy, the optimal path of inflation is zero in all periods \\(\pi_t = 0 \: \forall t\\). <br> <br> <br> <br> <br> <br> Proposition 3<br> Let \\(\gamma>1\\). When the convexity of monitoring costs is relatively high (low), optimal output growth is lower (higher) when leverage is high, all else equal. <br> <br> <br> </td> <td width=400 style="vertical-align:top;"> </td> </table> <br> --- class: left, top ### Interactions with monetary policy <table width=1100> <td width=600 style="vertical-align:top;"> Proposition 2<br> Under joint optimal monetary and wage subsidy policy, the optimal path of inflation is zero in all periods \\(\pi_t = 0 \: \forall t\\). <br> - Would get the same result from a standard NK model with markup shocks and the same policy instruments. <br> <br> Proposition 3<br> Let \\(\gamma>1\\). When the convexity of monitoring costs is relatively high (low), the optimal output growth is lower (higher) when leverage is high, all else equal. <br> - The convexity of monitoring costs generates a wedge between the social and private marginal costs of monitoring (see Hillier and Worral 1994 EJ). When high, the planner seeks a smoother path of leverage. <br> <br> </td> <td width=400 style="vertical-align:top;"> </td> </table> <br> --- class: left, top ### Covid-19 wage subsidies <table width=1100> <td width=600 style="vertical-align:top;"> United Kingdom - Furlough scheme. - Not conditioned on firm outcomes, complements inside wealth. - Furloughed workers not permitted to work. - Not great stimulus. - Not much value for employers (not very prudential). - Seems to not have been enforced (maybe a good thing). </td> <td width=400 style="vertical-align:top;"> </td> </table> <br> --- class: left, top ### Summary <table width=1100> <td width=600 style="vertical-align:top;"> We present a model where moral hazard generates a macroprudential externality. In lieu of aggregate demand externalities, there is still a role for fiscal stimulus. If the stimulus programme complements inside wealth, like a labour subsidy, then it will - encourage firms' prudence during the preceding expansion, and - reduce the costs of the moral hazard friction, - increasing welfare. </td> <td width=400 style="vertical-align:top;"> </td> </table> <br>